
Characterizing Practices, Limitations, and Opportunities 
Related to Text Information Extraction Workflows: A 

Human-in-the-loop Perspective 
Sajjadur Rahman 
sajjadur@megagon.ai 

Megagon Labs 
Mountain View, USA 

ABSTRACT 
Information extraction (IE) approaches often play a pivotal role in 
text analysis and require signifcant human intervention. Therefore, 
a deeper understanding of existing IE practices and related chal-
lenges from a human-in-the-loop perspective is warranted. In this 
work, we conducted semi-structured interviews in an industrial en-
vironment and analyzed the reported IE approaches and limitations. 
We observed that data science workers often follow an iterative 
task model consisting of information foraging and sensemaking 
loops across all the phases of an IE workfow. The task model is 
generalizable and captures diverse goals across these phases (e.g., 
data preparation, modeling, evaluation.) We found several limita-
tions in both foraging (e.g., data exploration) and sensemaking (e.g., 
qualitative debugging) loops stemming from a lack of adherence to 
existing cognitive engineering principles. Moreover, we identifed 
that due to the iterative nature of an IE workfow, the requirement 
of provenance is often implied but rarely supported by existing 
systems. Based on these fndings, we discuss design implications 
for supporting IE workfows and future research directions. 
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1 INTRODUCTION 
Information extraction (IE) [14] is the process of extracting struc-
tured information from unstructured text document. The extracted 
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structured information is semantically well defned and enable 
downstream task, such as entity matching [38], knowledge-base 
creation and population [31], text summarization [18], via logical 
reasoning on the structured representation of the document. There-
fore, information extraction is often the frst step in text analysis 
workfows. Similar to any other data science work, information 
extraction involves human(s) in the loop who intervene at various 
phases to steer the workfow. Therefore, a more systematic fne-
grained characterization of the IE workfow is required to develop 
tools that enhance practitioners’ productivity. 

Figure 1: A data science workfow, consisting of three high-
level phases: data preparation, model building, and model 
deployment [70]. 

There has been a recent shift in focus from the ML and NLP com-
munity towards human-in-the-loop data science [17], focusing on 
productivity tools for improving user experience and data manage-
ment practices for supporting task-specifc workfows. However, 
these tools are developed from a generic interpretation of data 
science workfows consisting of abstract processes, pipelines, and 
workfows [82] (see Figure 1). However, these phases are complex 
coarse-grained processes that involve a sequence of user actions 
to accomplish specifc tasks. For example, a data cleaning task 
within the data preparation phase would require the users to 1) 
view the data (view) 2) form a general understanding (assess), 3) de-
fne cleaning objectives (hypothesize), 4) develop a cleaning model 
(pursue), and 5) evaluate the model (verify). Therefore, the phase-
based coarse-grained characterization results in the development 
of tools that often lack crucial features to support fne-grained 
actions [57]. HCI and CSCW community have explored the fne-
grained details of specifc modalities such as data [46], tasks such as 
data wrangling [26], settings such as collaboration [82]. However, 
these approaches don’t capture the interplay among the coarse-
grained phases. 

In this work, we strike a balance between the two objectives 
as we analyze text information extraction workfows from a fne-
grained task-centric viewpoint. We propose an iterative task model 
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comprising fve tasks — view, assess, hypothesize, pursue, and ver-
ify — which is generalizable to all the phases of an IE workfow. The 
task model captures user actions and goals in each phase in a fne-
grained manner. When observed from the lens of the sensemaking 
process for analyst technology [55], we obtain a coarse-grained 
view, where the task model comprises both the foraging and sense-
making loops. The iterative foraging and sensemaking loops capture 
how data science workers may iterate within a single-phase and 
across phases of an information extraction workfow. 

We conducted a semi-structured interview-based study to cap-
ture fne-grained details of these workfows, where we interviewed 
data science workers in an industrial research lab. We focused on 
understanding essential elements like reasoning, motivation, and 
experiences as we discussed their IE practices and associated chal-
lenges. We analyzed the interviews by employing the grounded 
theory method [11] and performed an iterative analysis to formulate 
the aforementioned task model for conceptualizing IE workfows. 
Further investigation of the participant challenges uncovered a lack 
of adherence to the cognitive engineering principal [23] among 
the tools for supporting IE workfows. Moreover, we observed that 
provenance, a feature missing from the existing systems as built-in 
support, is a crucial requirement within the iterative setting of IE 
workfows. Based on those observations, we distilled eight design 
considerations for IE tools. 
Contributions. Our primary contributions are as follows: 

• We designed and conducted a semi-structured interview 
study on ten industry projects involving IE and conceptual-
ized IE workfows from fne- and coarse-grained perspectives 
through qualitative analysis. 

• We proposed a task-centric model that captures a fne-
grained representation of phases within IE workfows while 
revealing the iterative nature of a phase. 

• We further analyzed the tasks to capture user actions cor-
responding to each task across all phases and concretized 
task-specifc limitations. 

• We analyzed the limitations from the perspective of cognitive 
engineering principals to identify key design considerations 
for IE tools to assist in information foraging and sensemak-
ing. 

• We discussed how the adoption of the design considerations 
might impact the development of IE tools in supporting rapid 
prototyping. 

2 RELATED WORK 
Text information extraction is a specifc instance of data science 
work. In this section, we ground our discussion on the data sci-
ence process as we review literature on analyzing work practices, 
conceptualization of workfows, and tool usage. 

2.1 Analyzing data science work practices 
HCI researchers have conducted studies to analyze and assess data 
science work practices along various dimensions. For example, 
studies have been conducted to understand work practices along 
dimensions such as users engagement (e.g., collaborative [34, 82], 
single user [46, 70]), modalities (e.g., data [46, 50]), tools (e.g., note-
book [35]), roles (e.g., with domain experts [43]), themes (e.g., 

interpretability [29], trust [51], explanation [60]), and goals (e.g., 
wrangling [26]), among others. While exploring the work practices, 
many of these studies considered more than one dimension. These 
studies have resulted in identifying the challenges faced by stake-
holders, design implications for tool development, and future trends 
of the data science process. In this work, we focused on a specifc 
text analysis workfow spanning multiple phases, i.e., information 
extraction, in a collaborative setting within the industry and ana-
lyzed the current practices and limitations. Information extraction 
from text is a diverse and complex process and, within the indus-
try setting, involves many stakeholders beyond those that actively 
work with data or write code, i.e., data science workers. Our work 
focuses on this latter group — data science workers – to build an 
initial understanding of how they accomplish their workfows. 

2.2 Conceptualizing data science workfows 
Besides analyzing the data science workfows and the associated 
challenges and limitations, sensemaking studies [75] have been 
conducted to conceptualize the workfows into high-level concepts 
beyond just phases. For example, studies have characterized the data 
science workfow as a multi-phase process [70] by building upon 
work on the conceptualization of complex activities around data 
practices [46]. Researchers in HCI and CSCW have developed in-
sights into how data science workers approach their data [46, 50, 53]. 
Passi and Jackson examined how imposing rules impacted data sci-
ence workers and described an ongoing tension over the use of 
algorithmic rules [50]. Pine and Liboiron further explored how data 
science workers formulate their rules for defning what constitutes 
data, representation of data in a formal repository, and their combi-
nation process [53]. Muller et al. explored human formative work 
practices in data science and proposed fve types of human inter-
ventions in relation to data and defned data as a human-infuenced 
entity [46]. Our work is inspired by these sensemaking studies 
and proposes a task-based model to capture the inherently itera-
tive phases of information extraction workfows. According to this 
model, tasks represent fne-grained goals within a phase. We de-
compose the tasks into user actions to capture transitions between 
the tasks within a specifc phase and transition across phases. Such 
characterization helps us in formulating design principles for tools 
that can support IE as a single continuum. 

2.3 Tools capturing the data science process 
Users interact with multiple modalities within a data science work-
fow such as data, code, models. Such multi-modal interaction ne-
cessitates the usage of diferent types of tools. Data science workers 
use spreadsheets for exploring and manipulating data [47]. The 
exploratory nature of data science work often requires visual an-
alytics, for example, TensorBoard module in TensorFlow [39, 48]. 
These visual analytic tools enable data scientists to understand their 
data set and develop models quickly. Computational notebooks (e.g., 
JupyterLab [24], Jupyter Notebook [37]) have become increasingly 
popular among data scientists for organizing data science work. 
Novel techniques are also being developed to help them fnd, clean, 
recover, and compare code in notebooks [27]. There are also be-
spoke solutions such as Leam [57] and notebook extensions such 
as B2 [78], Glinda [15] developed to help data science workers in 
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various aspects. These advanced tools and features enable users to 
perform coordinated visualization and interactive data exploration. 
IE workfows necessitate the use of these tools in various phases. 
There are various machine learning libraries to support two funda-
mental tasks within IE workfows: named entity recognition [64] 
and relation extraction [10, 19]. We refer readers to existing sur-
veys [32] for a more complete discussion of the broader literature. In 
this work, we discuss how existing tools lack proper support for IE 
workfows and propose additional design considerations to support 
rapid prototyping, interactive exploration, seamless documentation, 
and built-in provenance. 

Earlier work such as CRISP-DM [63] and ASUM-DM [3] char-
acterized data science as an iterative multi-phase process. Recent 
work on managing data science workfows [5, 42, 81] address chal-
lenges related to experimentation, reproducibility, and deployment 
within the same multi-phase framework. However, such characteri-
zation is coarse-grained and do not capture the corresponding user 
actions in each phase. In this work, we propose an iterative task 
model which generalizes to all the phases of an IE workfow and 
enables us to perform a fne-grained analysis of user actions within 
the workfow. 

2.4 Data Science with Human-in-the-loop 
Research on data science workfows with human-in-the-loop, i.e., 
DaSH, have garnered signifcant interest in recent years [1, 17, 59]. 
DaSH is a paradigm wherein human users incorporate their knowl-
edge into and intervene at various stages of a data science workfow 
— from data preparation and exploration to model building and 
evaluation [2, 52, 68]. Prior work examines roles of automation in 
DaSH [79] and informs design rules for related tools [80] through 
interview-based studies. Besides conducting interviews, we also 
examine these systems using heuristic evaluation methods [23, 49] 
to identify usability problems in the user interface design. For ex-
ample, Gerhardt-Powals’s cognitive engineering principles [23] 
leverage empirical fndings from the cognitive sciences to inform 
the design of an interface. The principal has been widely used to 
evaluate human-in-the-loop interfaces in various domains such 
as e-commerce [12], computer-based testing [21], smartphone ap-
plications [33], among others. We focus on IE as a representative 
DaSH workfow due to its widespread usage in text analysis. We 
investigate how the cognitive engineering principals can guide 
the design of the corresponding human-in-the-loop IE tools and 
propose several design considerations. 

3 STUDY DESIGN 
The purpose of our study is to examine existing information ex-
traction practices and identify associated limitations and potential 
improvement opportunities. Data science projects (including infor-
mation extraction) can often take “months” to complete [73] and 
may involve exploring multiple approaches before a stable version 
with sufcient quality is developed. Given an information extrac-
tion project, we wanted to become aware of the decision-making 
process as data science workers reasoned over these strategies. 
Therefore, we opted for retrospective semi-structured interviews 
as our data-collection method. In particular, the study aimed at 
answering the following three research questions: 

RQ1 : What type of (a) tasks and (b) actions do users perform in 
various phases of an information extraction project? 

RQ2 : What are the challenges in accomplishing the tasks in vari-
ous phases of information extraction? 

RQ3 : How to improve users’ experiences with their current in-
formation extraction workfows? 

3.1 Participants and projects 
We conducted ten interviews on ten separate projects involving 
information extraction at Megagon Labs, an industrial research lab, 
with natural language processing, data management, and machine 
learning as the primary research areas. Megagon Labs is a subsidiary 
of a large holdings and conducts research and development for the 
other subsidiaries with worldwide businesses in stafng, human 
resources, travel, marketing, and other online consumer services. 
We interviewed 10 data science workers at Megagon Labs, one from 
each project — in total, the projects involved 38 collaborators with 
at least two collaborators per project. We asked the participants to 
discuss the project retrospectively, from its inception to completion. 
The retrospective discussion-based setting enabled the participants 
to discuss their strategic reconsiderations in various phases of the 
projects. 

We interviewed six researchers, three data scientists, and one 
graduate student working as a research intern at Megagon Labs. 
Note that none of the participants were authors of the paper and 
did not participate in the study design and analysis process. All re-
searchers have Ph.D. degrees in computer science with experience 
ranging from one to fve years in the industry. The data scientists 
have various degrees (BSc., MSc.) in felds such as computer sci-
ence and statistics, with similar years of experience in the industry. 
The research intern holds a bachelor’s degree in computer science 
and is currently a fourth-year Ph.D. student at a university focus-
ing on natural language processing and machine learning. All of 
the participants had completed more than one large-scale informa-
tion extraction project and are expert users of NLP/ML techniques, 
software, and libraries. 30% of participants were women, which 
compares favorably with recent estimates of 15% women in tenure-
track faculty in computing [73] and 20% women in data science 
positions worldwide [36]. 
Projects. Each project in the study involved information extrac-
tion. Information extraction was the primary task for six projects, 
whereas information extraction was employed upstream to facil-
itate the downstream tasks for the rest of the projects. Many of 
these projects were accepted for publication in academic confer-
ences (N = 6), open-sourced (N = 7), and deployed in a real-world 
setting as part of technology transfers (N = 4). All of these projects 
were collaborative. We describe the projects in more detail in Sec-
tion 3.3. 

3.2 Methods of inquiry and analysis 
3.2.1 Semi-structured interviews. Each of the interviews lasted 
about an hour. Interviews were semi-structured, starting with back-
ground questions on the participants’ roles, jobs, tools, datasets, 
teams, daily practices, followed by in-situ and follow-up project-
specifc questions that emerged during the interview process. The 
frst author was the interviewer. The interviews were conducted 
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remotely in Zoom and recorded (both audio and video) using the 
built-in recording feature. 

Following study introduction and background inquiries, we 
asked the participants to describe their project. We then asked 
them to explain their view of the phases and tasks within their IE 
workfow. Based on their description, we then further discussed 
each phase in detail in the selected project context. We discussed 
various challenges related to their workfow as and when the par-
ticipants mentioned those. We also asked the participants to list 
desirable feature enhancements for improving their IE experience. 
Finally, we asked the participants specifc questions on adoption, 
usage, and maintenance status of their projects. Before concluding 
the interview, we asked the participants to share any additional 
observations. 

3.2.2 Analysis method. The audio recording of the interviews were 
transcribed using an automated transcription service. The authors 
further curated the transcriptions to address inconsistencies. As the 
interview contained discussions on diverse and complex topics, we 
used grounded theory method for coding and examination of con-
cepts and relationships [11]. The interviews were then codifed and 
analyzed using a qualitative data analysis software, Dedoose [62]. 

The coding process was inductive where concepts emerged based 
on the data analyzed and high-level categories — such as phases, 
tasks, actions, operations, challenges, enhancement requests — were 
used to help organize overarching themes. We extracted 493 pas-
sages from the interviews with each containing one key topic sen-
tence. As in grounded theory analysis, we started with open coding. 
We identifed concepts and properties, followed by axial coding, 
where we aimed to relate the concepts and identify the context 
of these relationships. All coding was done by one researcher and 
refned through periodic overview and discussions with other re-
searchers. We repeatedly examined the extracted passages in the 
interviews to look for additional evidence and to validate and revise 
our emergent understanding. These iterative analyses led to a core 
set of 41 axial codes, which we combined into 4 selective codes. 
Presentation of quotes. In presenting participant responses in 
Sections 4, 5, and 6, we replaced or anonymized Megagon Labs-
specifc terminology. Since the details of the interview were gener-
ated via an automated transcription service, we further corrected 
spelling and grammatical mistakes in those documents by referring 
to the actual recording. Therefore, the quotes presented in this 
paper are essentially paraphrases. 
Limitations. We acknowledge that our study is limited in scope, 
specifcally targeting information extraction in the broader land-
scape of natural language processing tasks, and also in sample, 
as they were situated in an industrial setting. Furthermore, even 
though the projects involved several subsidiaries of a large holdings, 
all participants were employed at a single company. The choice of 
participants inevitably impacted the observed practices due to or-
ganizational norms, policies, and infrastructures. We also acknowl-
edge that each interview was conducted with only one collaborator 
per project, as such our interpretations and broad conclusions may 
be limited. Although data science workfows nowadays are col-
laborative, our study focused on individual work practices while 
briefy exploring collaboration in the context of project planning. 

We acknowledge this limitation and propose the analysis of the 
collaborative aspects of IE workfows as future work. 

3.3 Projects 
We grouped the projects into four themes: entity extraction (EE), 
entity matching (EM), knowledge-base construction (KBC), and 
content generation (CG). 
P1. Salient fact extraction: Company Reviews (EE): four re-
searchers and a data scientist worked to develop supervised and 
unsupervised techniques for identifying salient facts such as fne-
grained details, about companies from a large number of reviews. 
Using language models such as BERT [16], the team extracted 
salient facts from a dataset of fve million company reviews using 
about ten thousand labeled data. 
P2. Aspect-opinion Extraction: Hotel Reviews (EE): two re-
searchers and a data scientist developed techniques for extracting 
aspect-opinion pairs from a dataset of about a million hotel reviews 
using only few thousand labeled reviews [44]. They leveraged BERT, 
fne-tuned augmented data, to extract about three million aspect-
opinion pairs. 
P3. Structured data extraction: Job Benefts (EE): a data scien-
tist, in collaboration with a researcher, developed and compared 
several text extraction techniques [32], including rule-based and 
deep-learning (BERT) based techniques over a dataset with about 
one hundred thousand company reviews to collect list of benefts 
provided to employees. 
P4. Knowledge-base creation: Product Reviews (KBC): a team 
of six researchers developed unsupervised methods to capture im-
plications between opinions from user reviews using matrix factor-
ization [9]. The resulting framework was used to extract millions 
of opinions from reviews across multiple domains such as hotels, 
restaurants, movies, and travel. 
P5. Knowledge-base extension: QA (KBC):. a team of fve re-
searchers developed a system to extract millions of tuples from two 
real-world QA datasets, with more than 300,000 question-answer 
pairs, to extend the concepts within domain-specifc knowledge-
bases [8]. Given a sequence-to-sequence learning framework, the 
system combines distributed representations of a question and an 
answer to generate facts. 
P6. Knowledge-base population: QA and Reviews (KBC): fve 
researchers developed an entity set expansion method [65] for pop-
ulating facts in knowledge-bases from community QA and reviews. 
The system used two real-world datasets on community QA (≈ 1M 
QA pairs) and customer reviews (> 5M reviews) to populate the 
concepts in the knowledge-base. 
P7. Entity matching: Job - Candidate (EM): one researcher and 
a data scientist developed an entity matching solution to match job 
seekers to open job positions. The task was performed by combining 
transformers-based models and content structure-aware pooling 
methods. The system was validated on a synthetic dataset of fve 
thousand candidate profles and half a million job postings job 
postings [41]. 
P8. Explainable summarization: Reviews (CG): a research 
team of four developed techniques for producing explainable, easy-
to-interpret abstractive summaries from reviews. The team utilized 
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a sequence-to-sequence deep learning model to generate generate 
the restaurent summaries from 600,000 reviews of nine thousand 
restaurants in the Yelp dataset [71]. 
P9. Controllable Summarization: Reviews (CG): a team of fve 
researchers developed an unsupervised system for extractive opin-
ion summarization. The system utilizes vector-quantized variational 
autoencoders to extract popular opinions to generate summarized 
text from reviews [4]. The system was employed on 1.1M Tripadvi-
sor hotel reviews. 
P10. Topic modeling: Article Topics (CG): two data scientists 
developed techniques to generate 100 news article topics from fve 
million user reviews of companies. They applied a deep-learning 
method to extract aspects and then applied LDA [74] over text 
spans to generate the article topics. 

4 IE TASKS AND PHASES (RQ1A) 
Based on participants’ explanations of their projects, we divided 
an IE workfow into four phases: data preparation, model building, 
model evaluation, and deployment. Each phase consists of multiple 
tasks and corresponding user action(s). In this section, we frst 
defne the tasks and then describe each of the phases of an IE 
workfow in the context of these tasks. 

4.1 The task model of IE workfows 
All of the IE phases involve fve high-level tasks: 

• View refers to the act of viewing data. In this work, we refer 
to data in its most general sense, i.e., data can be a raw 
dataset or derived information (e.g., extractions and their 
labels, evaluation metrics). 

• Assess refers to the act of reconnaissance over the presented 
information, for example, examining data distribution, fnd-
ing interesting patterns. 

• Hypothesize refers to the act of reasoning over the obser-
vations to defne model semantics. 

• Pursue refers to the act of actualizing the hypothesized 
model over the data. We refer to a model as any process de-
rived based on a hypothesis that users can execute. Examples 
of models include extraction model, data cleaning operation, 
issuance of crowdsourcing tasks. 

• Verify refers to the act of qualitatively and quantitatively 
evaluating the model outcomes. Verify is a special case of 
the assess task only focused on the evaluation of a user’s 
pursued action. 

Figure 2: Both Foraging and sensemaking loops emerge 
across tasks within the task model. 

The tasks, phases, and their dynamics within an IE workfow 
can be explained using the notional model of sensemaking [55]. 

Figure 2 maps the IE tasks to the loops within the model. The overall 
process is organized into two major loops — a foraging loop [54] 
and a sensemaking loop [61]. The foraging loop, which involves the 
view task and the details on demand action corresponding to the 
assess task (see Table 1), enables users to form an understanding of 
the data. The sensemaking loop, which involves the hypothesize 
task and the rest of the actions in the assess tasks, helps defne 
semantics for the downstream tasks to be pursued. Both the loops 
also emerge during verifcation tasks (see Figure 4 in Section 5.2). 
Figure 3 shows how both these loops emerge in all the phases. 

4.2 Characterization of IE phases 
4.2.1 Data Preparation. The frst step in this phase is data under-
standing (i.e., foraging) where users view a sample of the entire 
dataset, often via eyeballing, to assess the data domain (e.g., sub-
jective reviews, factual information), its structure (e.g., tabular, 
semi-structured), and quality (e.g., cleanliness). When users fnd 
inconsistencies within the dataset, they reason over methods, i.e., 
hypothesize, for cleaning the data. Users then pursue those meth-
ods, often selected based on experience, to transform the data into 
the desired format. The entire process is captured by the following 
participant comment: “A lot of times it’ll just be opening the data 
by hand, seeing what’s the format, and getting a sense of what kind 
of information is in there and based on that either write a cleaning 
script to process things nicely [P10].” Users may further verify the 
quality of the data and repeat the steps as mentioned above until 
the data achieves the desirable quality. 

4.2.2 Model Building. In this phase, users again view a sample of 
the entire dataset to identify and examine, i.e., assess, diverse and 
representative patterns and their distributions using methods such 
as clustering. One participant commented: “So I would say that the 
challenge is mainly in the domain, what sort of information you’re 
interested in fnding whether it is opinions or not [P5].” Based on their 
assessment users then defne pattern semantics (hypothesize). 
Defning pattern semantics often involves multiple collaborators 
who label the patterns manually, then document their observations, 
and iteratively refne the pattern defnitions to create a fnal rubric 
for extracting patterns. In the absence of ground truth labels or 
a benchmark, users pursue an additional process of labeled data 
collection. Data can be collected by assigning annotation tasks to 
in-house experts or crowdworkers (pursue). Once data collection 
is completed, users may further verify the annotation quality using 
qualitative (e.g., eyeball) or quantitative (e.g., annotator agreement) 
measures. Depending on the quality of the labeling, users may 
further assess the labels and redesign the annotation task based 
on discussion hypothesize. 

After fnalizing the extraction pattern defnitions and pursuing 
the optional data collection step, users utilize the refned rules to 
create models (pursue) for extracting information from the dataset. 
Alternatively, users may reuse already existing models. In this stage 
of the workfow, users often lack an understanding of the fnal 
evaluation metric. So, users frst view and assess the quality of the 
extractions using simple measures such as error rate and support 
count of rules. This observation is captured by the following partici-
pant comment: “. . . we didn’t always have a benchmark to begin with. 
The benchmarks came later, when we were fnally evaluating this 
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Figure 3: Phases of IE workfow depicted using the task 
model (V = View, A = Assess, H = Hypothesize, P = Pur-
sue, and V f = Verify). Counter-clockwise from left: (a) data 
preparation, (b) model building, (c) model evaluation, (d) 
model deployment. Each phase involves an initial foraging 
loop that explores information (e.g., data, metrics, extrac-
tions) followed by sensemaking loop to formulate hypothe-
sis for pursuing the next action (e.g., clean, label, extract) via 
the pursue task. Users then verify the outcomes of the pur-
sue task via foraging and through a sensemaking process 
reconsider their hypothesis or move on to the next logical 
phase. 

system. Initially, when we are doing the exploration to know whether 
this idea works [P5].” 

Based on the results, users may choose to select the current 
version of the model for a more rigorous evaluation in the model 
evaluation phase with the entire dataset. The same participant com-
mented: “The rules I will base on maybe 10 or 15 examples, but then I 
would test it on at least 100 or 200 examples to see whether things are 
making sense before running it on the entire corpus [P5].” However, 
if the results are not satisfactory, users may explore the results in 
further detail to explain the model’s behavior by investigating the 
positive and negative examples (hypothesize). Users then update 
the models accordingly (pursue). These tasks are repeated until a 
stable version of the model is developed. 

4.2.3 Model Evaluation. In this phase, users employ the fnalized 
version of the model on the entire dataset (pursue). Users then 
verify the model on the labeled dataset using metrics such as preci-
sion, recall, coverage, top-k extractions. By this stage, users have 
a better understanding of the suitable evaluation metric and their 
acceptable values. In this phase, users tend to evaluate the model 
on multiple datasets. Similar to the previous phase, based on the 
results users may select the current version of the model as the 
fnal one or perform further assessment of the model (view and 
assess). The assessment may result in new observations on the 
model behavior (hypothesize) and users augment the model ac-
cordingly (pursue). Users then again employ the model (pursue) 
and evaluate (verify). For example, one participant commented: 
“. . . at times the rules will capture the 80% of the data, but I’m really 
interested in modeling the remaining 20% . . .we wanted to fgure out 
these long tail concepts . . . We will run (model), look at the output, 

make a judgement of whether it is capturing the long tail, and go over 
again to change the rules a bit [P6].” 

At frst glance, it may seem that both model building and model 
evaluation phases satisfy the same objective. However, model build-
ing is less restrictive and less rigorous than model evaluation. Model 
building is exploratory, where users operate on a small sample 
of data to formulate a basic understanding of the model behav-
ior. Model evaluation, on the other hand, is confrmatory where 
users extrapolate their understandings on a larger scale or test the 
system rigorously (e.g., addressing edge cases). One participant 
commented: “. . .what is the quality of the things you extract? And 
because it fails, then you go back. You look at the examples and see, 
okay, so this is a noun phrase, but I don’t want these noun phrases 
[P9].” 

4.2.4 Deployment. In an industry setting, deployment involves 
putting the fnalized model into production (pursue). However, 
publication of a model in an academic setting is also quite similar 
where creators open-source their code or models for others to repro-
duce the solution. However, users need to monitor the performance 
of the deployed model continuously. The model performance may 
degrade for a new dataset or due to concept drift in existing data 
domain. As a result, the users may again repeat tasks such as ver-
ify, assess, and hypothesize to update the model. One participant 
commented: “I’ve set up a dashboard with a number of plots . . . ratio 
of positive and negative examples, distribution of extractions . . . that 
monitoring is very important. when the data requirement changes 
(for the application) that’s not going to be explicit. So you need to be 
able to detect when this change [P3].” 

4.3 Discussion and takeaways 
4.3.1 The emergence of an iterative task model. The tasks in 
an IE phase can be repeated across multiple iterations (see Fig-
ure 3). These tasks emerge within a general fow of “view-assess-
hypothesize-pursue-verify” in all phases of an IE workfow. Itera-
tion can happen across phases. For example, in the aspect-opinion 
extraction project (P2), collaborators identifed that a collection of 
duplicated reviews generated by bots were impacting the model 
performance, which they addressed in the next iteration by em-
ploying deduplication strategies: “So if the results are not good we 
will do our analysis . . .we retraced back to the original reviews and 
found that those are bots that are sending the same reviews multiple 
times.” Therefore, the observation triggered a transition from the 
deployment phase to the data understanding and preparation phase. 

4.3.2 The impact of iteration on an IE workflow. As described in 
Section 4.2.2 and Section 4.2.3, users often repeat the process of data 
collection and model evaluation to obtain a high quality ground 
truth and an efcient model, respectively. To construct the ground 
truth, users iterate over several versions of the labeled data as well 
metadata such pattern semantics, annotator agreement. Similarly, 
as users iterate over model versions they keep track of metadata 
related to model performance such as qualitative observations and 
quantitative metrics (e.g., precision, recall error rate). For example, 
one participant commented: “So, the crucial point being when you 
train the models, you will specify a lot of hyper-parameters. then we 
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need to keep track which set of hyper-parameters resulting in what 
performance . . . F1 score, accuracy [P7].” 

Metadata management and provenance help users assess data 
and models. For example, users may assess labeling performance by 
comparing the annotator agreement rate between subsequent itera-
tions. Similarly, they may compare the error rate of diferent model 
versions. Based on the assessment users may decide to pursue next 
steps such as issuing new labeling task or updating existing model. 
We identifed several challenges related to metadata management 
and provenance in their existing practices, which we discuss in 
Section 6. 

5 IE TASKS AND USER ACTIONS (RQ1B) 
We now characterize the user actions corresponding to the tasks 
across the IE phases (see Table 1). In particular, we identifed that 
users’ IE operations map to 17 unique user actions. 

5.1 Characterization of user actions 
5.1.1 View. Sampling and exploring data are two actions that cor-
respond to the view task. The goal, as explained earlier, is to view 
data in its raw form. For example, viewing the dataset during data 
preparation (DP, hereafter), exploring labeled ground truth dur-
ing model building (MB, hereafter), and analyzing the outputs of 
the models during model evaluation (ME, hereafter) and deploy-
ment (MD, hereafter). Note that the sample action is often a crucial 
frst step in an IE phase as it makes the information perceptually 
scalable to the users and help them in qualitative analysis. One 
participant shared their sampling experience during data prepa-
ration (DP): “. . . the dataset has more than a one million rows . . . So 
we had to sample a subset like 10,000 rows [P1].” View actions can 
be performed either programmatically (e.g., random sampling) or 
by direct manipulation (e.g., sampling data in a spreadsheet by 
scrolling.) 

5.1.2 Assess. The assess task is performed in various phases to 
observe the presented information and ascertain interesting fea-
tures or patterns. Examples include computing distributions or 
summaries (DP, ME), examining data corresponding to the sum-
maries (DP, MB, ME), and comparing diversity of patterns (MB, ME, 
MD) (see Section 4.2). Such reconnaissance helps in hypothesis cre-
ation and decision making in subsequent steps of an IE phase. The 
operations corresponding to the assess task can be grouped into 
three high level actions: overview, details on demand, and compare. 
Overview: Overview action enables users to get a birds eye view 
of the underlying information space. The high-level information 
often helps in isolating errors, surfacing diverse and representative 
patterns, and obtaining data summaries. For example, one partici-
pant used k-means clustering to evaluate data quality (DP): “. . .we 
almost always end up with a cluster or two that are devoted purely to 
grammatical or spelling errors . . . [P10].” Besides clustering, another 
popular overview operation is computing distributions on various 
features of the data such as length of text and pattern count. These 
summaries help in decision making in the subsequent steps. For 
example, distribution of length of text in the corpus can infuence 
the model building decisions as mentioned by one participant (MB): 
“I want to try to understand how long texts tend to be if there is signif-
icant variety . . . that’s going to signifcantly afect your model . . . that 

is a much harder problem than modeling texts that are all of a similar 
size [P3].” 
Details on demand: Another important action related to assessment 
is obtaining further details of the summary information. Seeking 
such details helps in confrming the observations gathered as users 
can understand the context of the overview by examining the raw 
data. For example, one participant commented how clustering helps 
while qualitatively evaluating models (ME): “one thing that’s very 
common is I’ll try to cluster the text that I’m looking at. Then look at 
a few examples from each cluster . . . And so looking at a few examples 
from each cluster means that hopefully I’m looking at very diverse 
examples . . . [P3].” All of the operations belonging to this action class 
involve searching for the raw data corresponding to the overview 
or summary. Users perform the action in various ways such as 
printing samples using the grep command in bash script or print 
command Python. For example, one participant commented how 
they assessed potential extraction rules (MB): “. . . I just searched for 
the word (using grep) and got text preceding that word and following 
that word so that I don’t read an entire three paragraph review. I 
would just read the sentence that mentions the word [P4].” 
Compare: Compare action enables users to compare and contrast 
the diverse information, for example, during model building as 
mentioned by one participant (MB): “. . . at that point you have to 
go quickly glance at each cluster and get a sense of the main topic 
or what sets it apart. I then see if there’s a few clusters that have the 
same labels, maybe revisit them and try to see what diferences are 
there [P10].” However, the compare operation is also used to assess 
models across iterations using metrics such as error rate, ratio of 
positive and negative examples, support count of an extraction 
pattern (ME). For example, one participant commented: “. . . in that 
phase I kind of quickly do a sanity check that if the error rate matches 
what I recorded before and make sure the code doesn’t have a bug 
[P4].” 

5.1.3 Hypothesize. The user actions corresponding to the hypoth-
esize task often involve multiple collaborators reasoning over sub-
jective observations to reach consensus, e.g., defning pattern se-
mantics, creating extraction rubric. We identifed four actions cor-
responding to the hypothesize task: label data, document observa-
tions, defne semantics, and create rubric. 
Label data: The label action involves annotating information such 
as raw data (MB): “. . . we start from labeling the data sets, with all of 
us label 1000s of sentences and we pick the top 10 that will feel the most 
salient from these labels we try to observe [P1].” Users also annotate 
outputs of models during model evaluation (ME) to characterize 
model behavior. 
Document observations: Participants documented their observa-
tions during hypothesis using handwritten (paper) or digital (spread-
sheets) notes. For example, documenting potential extraction can-
didates with explanations during model building (MB): “I’ll actually 
try to record it down. For example, let’s say if a review talks about 
directions and hotel, maybe my assumption was that that review 
is defnitely talking about asking for directions to the hotel [P4].” 
Similarly, to compare diferent candidate extractors, i.e., models, 
participants may record performance, version, and the underlying 
heuristic of the corresponding model (ME): “I look at 20 results and 
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Table 1: Users actions per IE task and example of corresponding operations across phases (DP = data preparation, MB = model 
building, ME = model evaluation, MD = model deployment.) 

Task User Action Phases Operations 

View 
Sample 
Explore 

{DP, MB} 
{ME, MD} 

{scroll spreadsheet/text editor; sampling} 
{print; cat; view spreadsheet/text editor} 

Overview {DP, ME} {feature distribution; clustering} 
Assess Details {DP, MB, ME} {grep; view cluster members; 

view data corresponding to overview} 
Compare {MB, ME, MD} {compare cluster patterns; 

compare error rates} 
Label data {MB, ME} {label interesting patterns; label positive 

Hypothesize Document {MB, ME, MD} 
and negative examples} 
{performance log; handwritten or 
typed notes} 

Defne 

Create rubric 

{DP, MB} 

{DP, MB, MD} 

{defne pattern semantics or HITs via 
collaboration with experts} 
{fnalize semantics; fnalize rules} 

Pursue 

Prepare 
Expertsource 
Crowdsource 
Create model 
Reuse Model 

{DP, MB} 
{MB} 
{MB} 
{DP, MB, ME} 
{DP, MB, MD} 

Update model {DP, MB, ME} 

Validate {DP, MB, ME} Verify 

Evaluate {ME, MD} 

write down somewhere the quality of this heuristic . . . So I have a sense 
of how much noise I’m introducing (in later versions) [P4].” 
Defne semantics: Actions related to defning semantics involve mul-
tiple collaborators who often reach consensus via ad hoc discus-
sions: “It’s subjective. We will have meetings with others for agreement 
. . .Do we actually add something or remove something or refne the 
label [P1].” For example, one participants explained how they de-
signed human intelligence tasks (HITs) for crowdsourcing labeled 
data (MB): “. . . I will annotate and also, team members will annotate 
to achieve consensus of the labels. During this process, we will create 
our labeling instructions so that they are clear [P8].” 
Create Rubric: Using this action users map the defned semantics to 
actionable rules. For example, in the salient fact extraction project 
(P1) collaborators identifed two properties of salient facts, which 
they later used for extraction (MB): “we observed two characteristics. 
First one is the uncommon attributes, like some attribute that do not 
belong to all entities. And the second one is the scope, something 
measurable numerically.” 

5.1.4 Pursue. The actions corresponding to the pursue task opera-
tionalize a hypothesized model. Actions belonging to this class are 
employed for data cleaning (DP), issuing crowdsourced labeling 
tasks or creating new models (MB), reusing existing rules or models 
(MD). One participant commented: “frst we want to see if any of 
the existing models can accomplish the task. So, maybe we can use 

{flter; replace} 
{issue labeling task from experts} 
{issue labeling task from crowd workers } 
{create rules; train model} 
{reusing existing models ; 
reuse existing rules } 
{add or augment rules; tune parameters; 
update training data} 
{measure agreement, annotation quality, 
error rate, ratio of +ve and -ve examples} 
{measure accuracy, precision, recall, 
coverage, rule support count} 

that model [P2].” Revising models is also an example pursue action, 
which may involve adding new rules or training data as mentioned 
by one participant (ME): “For example, you can add rules to in addi-
tion to the current model, or you like you can like collect more data. 
You usually we will need to collect more labeled data [P10].” 

5.1.5 Verify. The verify tasks aim at evaluating the outputs of an 
action corresponding to a pursue task. Two actions correspond-
ing to this task are validate and evaluate. The actions related to 
validation are often informal measurements of user actions. For 
example, measuring crowdworker quality and annotator agreement 
for crowdsourcing action (MB). Other examples include assessing 
model performance during iterative refnement such as error rate 
and ratio of positive and negative examples per rule (ME). The 
evaluate action measures the performance of the actions pursued in 
the model evaluation and deployment phases (ME, MD). Examples 
include measuring precision and recall/coverage, rank of top-k, 
mean avg rank, accuracy and F1. 

5.2 Discussion and takeaways 
5.2.1 The exploration-confirmation loop. As shown in Figure 4, 
each phase in the IE workfow has two processes — an exploratory 
process and a confrmatory process. The exploratory process is 
bottom-up, i.e., formulates semantics from data. The confrma-
tory process is top-down, i.e., verifes the defned semantics using 
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Figure 4: Inherently iterative processes of exploration and 
confrmation. 

evidence. Users continue to iterate over the exploratory and confr-
matory processes until stable semantics for the model is defned. 

5.2.2 Human-in-the-loop model building. The projects in the study 
can be divided into two approaches: deep-learning-based and rule-
based. From an implementation standpoint, the key diference be-
tween the two approaches would be the presence (i.e., rule-based) 
or absence (i.e., deep-learning-based) of feature-engineering. In 
deep-learning-based extraction, participants employed models such 
as BERT [16] trained on crowdsourced data. However, they were 
required to form an understanding of the data through labeling and 
documentation to defne the semantics of HITs. On the other hand, 
in rule-based projects, participants performed data reconnaissance 
to defne and handcraft extraction rules. While the goals of the two 
approaches are diferent, the underlying process remains the same 
where humans are involved in the loop for conceptualizing pattern 
semantics. 

Similar sensemaking-oriented task model can be seen for defn-
ing semantics related to other phases such as model evaluation 
and deployment. For example, in the knowledge-base population 
project (P6) participants initially used precision and recall as met-
rics and later refned the fnal evaluation metric to be precision@k 
and recall@k due to the unbounded nature of the extraction sets. 
The underlying task model for creating the evaluation metrics were 
the same as shown in Figure 4: viewing a summary of performance 
(view), assessing the results by examining raw data (assess), doc-
umenting data and model characteristics and defning evaluation 
criteria (hypothesize), creating metrics accordingly (pursue), and 
verifying the metrics (verify). 

6 IE WORKFLOW CHALLENGES (RQ2) 
We now describe challenges related to various IE tasks. 

6.1 Challenges of performing IE tasks 
6.1.1 Dificulty in foraging information. Foraging information can 
be challenging as mentioned by one participant: “The biggest chal-
lenge is generally knowing what information we are interested in 
extracting [P5].” Following are some of the challenges as users seek 
information. 
Perceptual scalability: One participant pointed out how perceiv-
ing even small samples of data can be challenging: “It was difcult 
for us to explore a fraction of the data [P2].” Another participant 

commented: “. . . There’s there’s no really good way to verify rules 
(quality) because the corpus is huge [P4].” 
Lack of context: Participants also requested features to automat-
ically highlight interesting information as they sought details on 
demand: “. . . just having indicators that show this is a good example. 
This is negative and this is not [P3].” While viewing information 
in context is helpful in understanding the data, features capturing 
such context are lacking in existing solutions: “. . . show the results 
and let you explore those results interactively. I think even that is a 
really useful feature. Currently, for example, I will do that and go to 
my fles and see what’s wrong and change [P3].” 
Lack of semantic search capabilities: Spreadsheets and bash 
commands (e.g., grep) lack advanced search capabilities. For ex-
ample, the search and flter operations in spreadsheets are limited 
to exact match and don’t consider semantic similarity. One partici-
pant commented: “. . . maybe some kind of fltering of synonyms . . . So 
for example we want to label everything with salary into benefts. 
There are many synonyms of salary. Especially I need to enumerate 
the synonyms myself . . . because Google Sheets doesn’t provide that 
functionality [P2].” While bash commands such as grep are more 
expressive and support regular expression-based search, they also 
lack semantic search functionalities. For example, one participant 
requested searching by parts-of-speech tags with grep: “The only 
thing that I wish grep had is that . . . I would (search) delicious followed 
by two (placeholder) words and then a NOUN, as opposed to say, food 
[P4].” 
Direct manipulation vs. programmable search: While compu-
tational notebooks enable users to implement bespoke semantic 
search, they impede free-form data exploration due to a lack of 
direct manipulation capabilities. One participant commented:“main 
downside of notebooks is sometimes its harder to dig deep into the 
data. Because the print feld is a bit limited. And you can’t do things 
like sorting or editing data [P10].” 

6.1.2 Dificulty in sensemaking. While sensemaking is crucial for 
users to make informed decisions about their subsequent actions, 
there are several challenges with the existing set up. 
Difculty in qualitative validation: To qualitatively assess ex-
tractions users need to manually explore the raw data correspond-
ing to extractions, which can be cumbersome as mentioned by one 
participant: “. . . the other one (recall) is a little bit more tricky, because 
you need to read reviews . . . once you implemented your extraction 
then you need to go back and see, was there something you missed? 
. . . I would create another notebook or program and repeatedly print 
out documents (reviews). That’s a very bad experience [P8]. Similar 
observations can be found for debugging of extractions: . . .what we 
have to do, which is actually very tedious, is to get an extraction, go 
back and see where it came from. Or get sentences that didn’t have 
extractions or suspiciously too few extractions to see if that made sense 
or we missed something [P10].” 
Labor intensive documentation: The documentation process is 
even more tedious and time consuming as users need to reason 
over the presented information and then document their observa-
tions. For example, in the structured data extraction project (P3), 
the participants maintained a log of the errors of rules and their ex-
planation in Jupyter Notebook cells: “I’ll copy all of the code within 
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that cell, paste it in a cell down below it, make modifcations there to 
the rule, and then go through that process again.” 
Lack of an overview interface: Due to the lack of a built-in 
overview interface that conveys diverse and representative infor-
mation, participants faced difculty in comprehending the informa-
tion space and often resorted to creating custom features to obtain 
overviews or summaries from the data. One participant commented: 
“. . . what we need right now is a visualization UI. So we hope that there 
will be like a visualization ready for us to for example, help us draw 
key features to analyze prediction results [P1].” Another participant 
requested: “. . . a clustering process that’s part of the labeling pro-
cess that you can label the most important examples instead of just 
labeling random things [P3].” 
Providing interactive feedback: Participants also requested au-
tomated mechanisms for focusing their attention during the sense-
making process. For example, one participant requested an alerting 
feature to inform data quality issues after annotation by crowd-
workers or experts: “. . . there is a control board that shows me all 
these statistics and sends me alerts. For example, annotation alerts 
that with these we were not able to train a (quality) model [P8].” 
The same participant requested automated notifcation on negative 
model performance: “. . . notify training model doesn’t converge. It 
will defnitely make my life easier [P8].” 
Facilitating comparison: Another important action within the 
sensemaking process is comparison such as comparing model per-
formance or impact of diferent parameter settings. One participant 
commented: “. . . say we have 10 diferent models. And then I’m pretty 
sure I like to like do analysis in an interactive manner, so that I can 
pick up the best model for the purpose. Otherwise, I think it’d be time 
consuming see 10 diferent outputs to from the result fle [P9].” Partic-
ipants also requested what-if style dashboard (similar to LIT [69]) 
to perform counterfactual analysis: “. . . a table where I have some 
columns that could be used as parameters, and then I have the true 
label and the predicted label as two columns. Then that would be all 
you need to feed into (a system) that outputs a plot where you can 
select and parameters and their values and see how the metrics change 
[P10].” 

6.1.3 Dificulty in “pursue” tasks: The challenges related to the 
pursue task are often action specifc such as labeling, augmenting 
models. 
Labeling and cognitive burden: The labeling of data often puts 
cognitive burden on the users as mentioned by one participant: “So 
it was fairly labor intensive labeling. I would end up spending a full 
30 seconds to a minute on each entry so it wasn’t very efcient [P10].” 
While there are various solution now available to make labeling 
easier, they often do not capture the entire spectrum of labeling 
requirements [6]. In multiple projects (P2, P8, P9, P10), participants 
had to perform bespoke labeling tasks that were not supported by 
existing tools. 
No-code/low-code model confguration: While reusing a model, 
participants requested GUI-based features to confgure model pa-
rameters, inputs, and outputs. One participant commented: “I can 
just do some very high level confguration that doesn’t require any un-
derstanding of the code structure. I say column A is the input, column 
B is the classifer output and then do all the work without writing the 

code [P8].” Participants even created custom wrappers to models for 
confguring parameters. For example, one participant implemented 
a parameterized search function over a bash command: “For some 
projects I was doing this (grep) so much that I created aliases in the 
shell script to search with parameters like fetch delicious and food with 
words in between . . . I didn’t want to type that long regex command 
which is about the spaces in between. So if there was only something 
that would do that (automatically) [P4].” 

6.2 Challenges related to iteration 
From the interviews, we identifed several challenges related to 
metadata management and provenance that participants experi-
enced to keep track of both task outcomes and data across iterations. 
We also observed challenges in context switching due the iterative 
nature of IE workfows. 

6.2.1 Bespoke provenance management. Users often manually cre-
ated data provenance mechanisms to keep track of data across 
iterations. Integrating provenance practices in the IE workfow 
enables users to explore the lineage of data, extractions, and mod-
els. For example, one participant commented: “So basically every 
step of the extraction we just append new information to the reviews 
. . . aspect and opinions. we keep track of which tokens are these aspects 
coming from? also the character ID, the token ID, sentence ID. This is 
something that we developed manually [P4].” Therefore, the onus 
is on the user to integrate provenance measures. Absence of such 
a measure can lead to loss of information, which can hamper the 
IE task as captured by the following participant comment: “I never 
recorded the sample. Later, when there was a mistake, I could not fnd 
it (the samples), because I was not sure which slice of the data I got it 
from. . . . because random sampling doesn’t produce the same seed, it 
doesn’t give me the same instances [P4].” 

6.2.2 Cumbersome experiment tracking. Metadata can be both 
quantitative and qualitative. To track quantitative metadata (e.g., 
metrics, parameters) related to their pursued actions, users employ 
various strategies such as naming result fles with tags related to 
various metadata. One participant commented: “I tend to be very 
verbose in my fle names and essentially include almost every param-
eter that went into training, ends up expressed in the flename . . . And 
that becomes really cumbersome to keep track of [P5].” Another par-
ticipant created separate log fles for each iteration and added the 
logs in a spreadsheet: “after I fnish (model building) at that point 
I’ll be in Google Sheets, and I’ll have essentially a separate sheet for 
each iteration, and then I’ll generally have a single master sheet at 
the beginning, that has a summary data statistics and parameters for 
each of the sheets comprising the fle [P10].” 

6.2.3 Labor intensive metadata tracking. Tracking qualitative meta-
data (e.g., user comments, documentation) can be an even more 
tedious experience as these are often verbose comments or docu-
ments shared among collaborators. For example, in structured data 
extraction project (P3), the users maintained a log of the errors 
of rules and their explanation in jupyter notebook cells, one cell 
for each rule version. The participant commented: “(For each rule 
version) I will document the examples that were wrong grouped by the 
reason for why each one was wrong. Once I’m done with the process, 
I essentially have N versions of the rule. And I can look at why and 
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where each version the rule failed. So that I can easily understand the 
provenance of the rule and how and why I made improvements.” 

6.2.4 Tedious context switching. Participants employed various 
tools such as spreadsheets, computational notebooks, and bash 
commands, for completing their tasks. However, each tool has us-
age across multiple tasks. For example, spreadsheets were used 
for viewing data (view), labeling patterns (hypothesize), prepar-
ing/cleaning sample data (pursue). Computational notebooks were 
used across all the tasks. Bash commands were used for viewing 
sample data (view), regular expression-based search (assess), and 
running models (pursue). Since both the phases and tasks are it-
erative, users were often forced to move back and forth between 
multiple tools as they accomplished their IE workfow, which can 
be cumbersome. 

7 DESIGN CONSIDERATIONS FOR IE TOOLS 
(RQ3) 

In this section, we distill several design consideration for supporting 
human-in-the-loop IE workfows based on the observed challenges. 
We discuss the design considerations at both feature- and system-
level. We situate our discussion in the context of Gerhardt-Powals’s 
cognitive engineering principles [23], a widely used heuristic eval-
uation method for evaluating human-in-the-loop interfaces (see 
Section 2.4). 
Cognitive engineering principles. We focus on the following 
principles: automating unwanted workload (CP1), reducing un-
certainty of information (CP2), fusing data to provide high level 
abstraction (CP3), using known metaphors for ease of interpretation 
(CP4), displaying information in a logical manner (CP6), providing 
visual aids during information seeking (CP7), maintaining context 
of current focus (CP8), and presenting information at multiple levels 
of detail (CP9). Of the two remaining principals, one principal pro-
motes context-dependant naming of actions, which is observed by 
any standard systems nowadays. The other principal on judicious 
redundancy is related to the design and organization of interface 
components, which is beyond scope of this discussion. 

7.1 Feature-level considerations 
D1. Facilitate advanced search capabilities: Search and flter 
operations help focus a user’s attention to information being ex-
plored (CP8). An IE tool should support typical semantic search 
functionalities — e.g., search by synonyms, POS tags, regular ex-
pressions — as defaults (CP4). Besides programmatic specifcation 
(e.g., python script), users should be able to specify these operations 
either via direct manipulation, e.g., a menu bar (CP1). For example, 
TextEdit [13] is a wrapper for Pandas dataframe [67] that enables 
users to programmantically perform semantic search. 
D2. Provide interactive feedback: Interactive feedback can help 
in improving trustworthiness of a user action while focusing user 
attention to the desired information (CP2,CP8). Participants re-
quested interactive feedback for various user actions across tasks 
for highlighting information (in overview, details on demand ac-
tions) and conveying updates or alerts (in validate and evaluate 
actions). Feedback should be automatically provided as visual aids 
using known metaphors such as color highlight (CP1,CP4,CP7). 

D3. Generate automated summary: Overview interfaces are 
extremely popular in the information visualization domain — 
overviews make the information space perceptually scalable thus 
reducing cognitive burden of users [25]. Viewing the information 
at multiple levels of detail, i.e., summary and raw data, also pro-
vides more context to the users (CP3,CP9). The grouping within 
the overviews should be constructed automatically and should con-
vey information in a meaningful (e.g., clustering text by semantic 
similarity) and a visually consistent manner (CP1,CP6,CP7). 
D4. Provide means for comparison: Comparison actions are 
fairly common while assessing data and models. However, compari-
son operations often lead to visual discontinuity of the information 
being explored leading to users loosing context of their task [56, 72]. 
The comparison feature should automatically convey comparative 
information meaningfully with visual aids, to enable informed deci-
sion making (CP1,CP6). Moreover, information should be conveyed 
at multiple levels of detail to add validity and reduce uncertainty 
(CP2,CP9). For example, highlighting diference between model 
performance across iterations via both charts and tables. 
D5. Ensure ease of hypothesis creation: Hypothesize actions 
such as labeling and documentation are crucial for sensemaking 
and happen in a collaborative setting. As these actions are labor 
intensive, an IE tool should automate the process, for example, via 
recommendation of potential labels, explanations, metrics (CP1). 
Both labeling and documentation should be integrated as default 
features within any IE tool (CP9). 
D6. Enable confgurable actions: While not as common as the 
previous features, confgurable pursue actions (e.g., tuning mod-
els parameters) still have their benefts. Confgurable user actions 
should be designed in a way such that unwanted workload of users 
are reduced (CP1). IE systems should introduce the “confgurability” 
feature wherever appropriate. 

7.2 System-level considerations 
The system-level considerations are based on our observation of 
usage of tools across IE tasks and iterations. Users employ various 
tools to accomplish their goals — spreadsheets and bash commands 
for data exploration and preparation, computational notebooks and 
scripts for both model development and data exploration. However, 
none of these tools capture IE phases within a single continuum and 
users need to move back and forth between multiple tools which can 
be tedious. As mentioned earlier, while provenance and metadata 
management across iterations are crucial to IE, existing solutions 
lack built-in mechanisms to support such iterative process. 
D7. Reduce context switching: Context switching is an un-
wanted workload that puts cognitive burden on the users and leads 
to loss of context [56, 72]. One approach to reducing context switch-
ing between tools is to design a system that groups multiple views 
related to an IE process, i.e., data view, summary view, script/code 
view (CP1,CP9). For example, Leam [57], a general-purpose text 
analysis tool combines a spreadsheet, a code editor, and an inter-
active visualization pane to support integrated text analysis. How-
ever, a crucial requirement for such a system should be supporting 
metaphors that are already known to the users. Therefore, instead 
of developing a new solution, a better approach is to infuse those 
metaphors into existing solutions (CP4). For example, enhancing 
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Table 2: Design consideration for IE tools and their relationship with cognitive engineering principles [23]. 

Design considerations Automate Reduce Fuse Known Group Visual Focus Multilevel 
Design considerations workload (CP1) uncertainty (CP2) data (CP3) metaphor (CP4) data (CP6) aids (CP7) attention (CP8) detail (CP9) 
D1. Facilitate advanced search ✓ – – 
D2. Provide interactive feedback ✓ ✓ – 
D3. Auto-generate summaries ✓ – ✓ 
D4. Provide means for comparisons ✓ – – 
D5. Ensure ease of hypothesis ✓ ✓ – 
D6. Enable confgurable actions ✓ – – 
D7. Reduce context switching ✓ – – 
D8. Support for provenance ✓ – – 

computational notebooks with extensions to include a data view 
and interactive visualizations. 
D8. Support for provenance: As discussed in Section 6.2, IE 
workfows are iterative and require integration of provenance and 
metadata-management practices for ease of assessment and hy-
pothesis. Therefore, features that enable automated provenance 
and metadata management should be promoted as frst-class citizen 
of any IE system (CP1). 

8 DISCUSSION 
We now discuss the implications of the task model and our proposed 
design considerations for developing IE tools. 
IE as a continuum: enhancement vs. creation. The notional 
model of IE tasks is inherently iterative and often requires users 
to make transitions to diferent phases or tasks on-demand, thus 
necessitating context switching between tools. The system-level 
design consideration (D1), outlined in Section 7.2, recommends that 
an IE tool should reduce such context switching to reduce cognitive 
burdens of the users. One possible approach is capturing the modal-
ities — data, charts/summaries, code — within a single continuous 
process. Recent eforts in such combination have resulted in either 
creation of bespoke tools (e.g., Leam [57]) or enhancements (e.g., 
B2 [78], Lux [40]). These bespoke solutions often ofer new inter-
actions but are not feature-complete. Therefore, they sufer from a 
lack of adoption. Enhancements, on the other hand, often capture 
a subset of the modalities and requirements. However, iterative 
enhancement focusing on capturing the end-to-end process and 
the complete set of features ofers more promise. In fact, Xin et 
al. [79] identifed the self-sufcient end-to-end workfow support as 
a crucial factor in ease-of-use and efciency of human-in-the-loop 
AutoML platforms. 
Iterative planning and collaboration: a creative design per-
spective. A common theme across the projects is iterative hypoth-
esis creation along multiple threads, such as model refnement and 
concretization of an evaluation metric. The hypothesize tasks are 
collaborative and are crucial for defning the action items for the 
subsequent pursue task. To this end, the hypothesize task is simi-
lar to the creative design tasks (e.g., web design [7]), which also 
involves such iterative planning and collaboration. Stakeholders 
of the design task create and share unstructured documentation 
of requirements updated both synchronously and asynchronously. 
The documentations are then distilled into actionable plans ei-
ther manually [7] or semi-automatically [58]. Throughout the task, 
stakeholders iterate over the plan. Similarly, the hypothesize task 
in IE contributes to iterative formation of rubrics such as extraction 

✓ – – ✓ – 
✓ – ✓ ✓ – 
– ✓ ✓ – ✓ 
– ✓ ✓ – ✓ 
– – – – ✓ 
– – – – – 
✓ – – – ✓ 
– – – – – 

rules and evaluation metrics. Several approaches for model docu-
mentation (e.g., Factsheets [20] and Model Cards [45]) and data 
documentation (e.g., Datasheets [22] and Nutrition Labels [28]) 
have been proposed to be used as checklists to ensure the qual-
ity of models and data. However, recent work [45, 82] argue for 
greater standardization around documentation to record discus-
sions and decisions made within data science workfows. Moreover, 
within a collaborative environment, where team members co-ideate 
and deliberate, any computer-mediated solution may be vulnera-
ble to confict and misunderstanding [76, 77]. To ensure ease of 
hypothesis, as recommended by design consideration D5, a bet-
ter understanding of the pain points of such a human-in-the-loop 
process is crucial. 
Maintenance and reproducibility: an afterthought or a ne-
cessity? Throughout various sections of the paper, we discussed 
how provenance and metadata management are required for repro-
ducibility of IE workfow and efective monitoring and governance 
of data and models. Zhang et al. [82] identifed lack of provenance 
as a contributing factor in obfuscation and loss of knowledge when 
data science teams share data. As outlined in our design consider-
ation, D8, provenance and metadata management should be pro-
moted as a frst-class requirement of any information extraction 
tool. One approach can be to instill MLOps [42] practices by inte-
grating suitable platforms with the tool. However, MLOps practices 
are designed to deploy and maintain machine learning models in 
production reliably and efciently. Therefore, further research is 
required to identify ways to integrate such practices into research 
environments, which can be highly experimental and more iterative 
than production environments. 
Human agency vs. automation. A key feature in all of the design 
considerations discussed in Section 7 was automating unwanted 
workload, one of the design principles of cognitive engineering. 
However, the tension between human agency and automation is 
long-discussed in HCI research [66] and poses vital challenges for 
designing and engineering data science platforms. How can we 
efectively integrate automated reasoning into interactive systems 
without impeding human agency? Recent work exploring human-
AI collaboration [70] argues that a completely automated process 
may impede a data science worker’s deep understanding of the data 
and models. They envision an augmented data science environment 
where data scientists, in collaboration with subject matter experts, 
steer automated agents to produce outputs that satisfy business 
goals. This viewpoint aligns with mixed-initiative systems [30] that 
aim to ofer the best of both worlds with principles on when an 
automated agent should proactively take action and when a user 
should. Therefore, a more in-depth investigation of approaches 
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to reconciling agency and automation is required as the design 
considerations are incorporated into IE systems. 
Broader implication of the task model. While we derived the 
task model based on grounded theory-based analysis of IE workfow 
practices, it is not clear whether the task model generalizes to any 
data science workfow. There are similarities between the phases of 
a typical data science workfow and our observed IE workfow. How-
ever, as shown in Figure 1 there may be additional operations and 
modeling requirements depending on the task at hand. Moreover, 
as mentioned in Section 2.1, data science workfows may involve 
other stakeholders beyond data scientists, e.g., product managers. 
Besides exploring the generalizability of the task model, a deeper 
investigation of various tasks is thus required. For example, tasks 
such as assess and verify are often associated with trust and inter-
pretability in data science. Passi and Jackson [51] argued that the 
perceived value of the quantitative metrics of assessment and verif-
cation may vary across stakeholders. Therefore, understanding how 
to work with such plastic nature of quantifed trust is crucial when 
designing trustworthy systems involving multiple stakeholders. 

9 CONCLUSION 
In this paper, we presented a semi-structured interview-based study 
to understand IE work practices and observed an iterative fne-
grained task model that emerged across all the phases. We identifed 
several challenges with the existing IE workfows and proposed a set 
of design considerations, based on cognitive engineering principals, 
for developing human-in-the-loop IE tools. The design principals 
may guide the development of future tools and help identify en-
hancement opportunities within existing systems. Therefore, an 
immediate next step is to operationalize the principals within popu-
lar data science environments such as computational notebooks and 
conduct large-scale studies to evaluate their efectiveness. Moreover, 
the study can be extended to understand the role of collaboration in 
the task model and characterize the pain points related to aspects 
such documentation, hypothesis formulation, and confict resolu-
tion. Finally, additional studies can be conducted to understand the 
broader implication of the task model along dimensions such as 
generalizability, trust, and interpretability within the human-in-
the-loop data science setting. 
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